a2 United States Patent

Taswell

US008886628B1

(10) Patent No.: US 8,886,628 B1
(45) Date of Patent: *Nov. 11, 2014

(54) MANAGEMENT OF MULTILEVEL
METADATA IN THE PORTAL-DOORS
SYSTEM WITH BOOTSTRAPPING

(75) Inventor: Carl Taswell, Ladera Ranch, CA (US)

(73) Assignee: Akeakamai, Inc., Ladera Ranch, CA
(US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 249 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 13/111,803

(22) Filed: May 19, 2011

Related U.S. Application Data

(60) Provisional application No. 61/348,224, filed on May
25, 2010, provisional application No. 61/412,280,
filed on Nov. 10, 2010, provisional application No.
61/159,773, filed on Mar. 12, 2009.

(51) Int.CL

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)
(52) US.CL

USPC oot 707/707, 707/714; 707/771
(58) Field of Classification Search

USPC 707/707-709, 760, 771, 999.003, 714,

Netwaork of FURTAL copistrtes

PORTAL-DOORS System

707/737,755, 758,794, 795, 811; 709/202,
709/203, 217-219
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,151,624 A * 11/2000 Teareetal. 709/217

8,335,778 B2* 12/2012 Ghoshetal.
2006/0122876 Al* 6/2006 Von Schweber etal. 705/10

* cited by examiner

Primary Examiner — Marc Filipczyk

(57) ABSTRACT

The PORTAL-DOORS System has been designed as a dis-
tributed network system with hierarchical authorities for
entity registering and attribute publishing of mobile meta-
data. An alternate bootstrapping design with self-referencing
and self-describing features has been implemented with an
integrated model for the combined registry-directories that
co-exists with the independent model for the separate regis-
tries and directories. The concept of multilevel metadata
about metadata has been implemented with the use of entity,
record, infoset, representation and message metadata. This
multilevel metadata about metadata improves the efficiency
of search and analysis of the metadata content within the
networked system. The methods facilitate search of varying
scope both within and across the registries, directories and
registry-directories focused on different problem oriented
domains. Maintaining the integrity of these problem oriented
domains serves to improve the efficiency of search through-
out the system.

8 Claims, 7 Drawing Sheets

Network of DODEE divectortes

DCORS recond

Agent

Resguies:
saby

PORTAL-DOORSE netak server interaciion

Soarch PORTAL

8l
| Sesen DOORS % Recond skpnahs

Lawical server netwark

Serrantie shrver bk

PORTAL-DOORS System Data Records: Resource metadata is registered and published by

agents for scarch by users in the PORTAL-DOORS server networks. Semantic services here are defined as

those using the RDIFOWL/SPARQL stack of technologies, whereas lexical services are defined as those

using only character string processing, terminologies, or those XML technologies that do not require use

of RDF triples. Ficlds within data records are considered required or permitted with respect to the schemas

maintained by the root servers. The figure displays enly the most important fields; for all fields, sce the

reference model implemented with XML Schemas.

US 8,886,628 B1

Sheet 1 of 7

Nov. 11, 2014

U.S. Patent

‘ofeross ‘Krourou

3

10ssa00xd Sutpnur sjueuodwon 30149p PIm urgorw sunndurod v ‘o1 ‘eindmos asodind (rioues jo weiderp yporg 11 2ndy

8oe—

019 ‘285MO ‘preogiay ‘Arjdsip

8ig—

b

A 8

o v ¥ v &

m sng =

& & ,// _,.U

= -90€ O

Ny Y

08 206" |
VRN

US 8,886,628 B1

Sheet 2 of 7

Nov. 11, 2014

U.S. Patent

“JOUIOIUT O AQ PIIOJUTOD SIDTAIP YIOMIDU PIANGLISIP pue 101ndwios Yl SUIOBIUT JOSN JO WRIdeIp yoo[g 17 2ndL

U.S. Patent Nov. 11,2014 Sheet 3 of 7 US 8,886,628 B1

PORTAL-DOORS System

Mk of PIOETAL reginivies Saestoveark of DOCGER dimatonas

DOORE retord

PORTAL rocond

Rastred

Agent

4. indosel gatus

PCITTAL-D0GRE natwork server iniaraction

7. Bnosrd provenaiis
. RRecued signakire

1, Craner Signaturs

A
& Search PORTAL

Lawicad server nehwork Sananatic server nebaork

Figure 3: PORTAL-DOORS System Data Records: Resource metadata is registered and published by
agents for search by users in the PORTAL-DOORS server networks. Semantic services here are defined as
those using the RDF/OWL/SPARQL stack of technologics, whereas lexical services are defined as those
using only character string processing, terminologies, or those XML technologices that do not require use
of RDF triples. Fields within data records are considered required or permiited with respect to the schemas
maintained by the root servers. The figure displays only the most important fields; for all fields, see the

reference model implemented with XML Schemas.

U.S. Patent Nov. 11,2014 Sheet 4 of 7 US 8,886,628 B1

Booistrapping Combired Dasign:

v NEXLUS registrars

- PORTAL reglsities

- DOCRE dirgotonies

- NEXUS servers onerale as
registray only oF as integrated
registrariregisingdivectory

Crriginal Ssparate Design:
- PORTAL registrarsiregisties
-~ DOORE directonios

WNEXLS G
FrifSec

BOORS Y BramiWaich Manflay GensSoans
Pridgsc PeiBon Priifec PrifSac

Figure 4: PORTAL-DOORS System Server Network: PDS server networks with interacting clouds of
NEXUS registrars, PORTAL registries, and DOORS directories. NEXUS servers may expose either the
NEXUS registrar service for the separate design or the integrated set of NEXUS registrar, PORTAL reg-
istry, and DOORS directory services for the combined design. These resource metadata server networks
for PORTAL registering of labels and tags and DOORS publishing of locations and descriptions are analo-
gous to domain metadata server networks for IRIS registering of names and DNS publishing of addresses.
Primary PORTAL registries may be established by an organization or person who maintains any local poli-
cies governing registration of resources at that particular primary PORTAL registry. Examples shown here
(GeneScene, BrainWatch. ManRay) implement policies with a problem-oriented focus on their respective
specialty domains. Specific criteria for registration are determined by the local schema of the PORTAL
primary which must nevertheless comply with the global requirements of the PORTAL root in order to

assure interoperability between different PORTAL primaries.

U.S. Patent Nov. 11, 2014 Sheet 5 of 7 US 8,886,628 B1

]

Hesouro

Recordifetarala

fosetilctadata

Figure 5: Resource representation: entity metadata is primary or Level / metadata about the entity itself.
record metadata is secondary or Leve/ 2 metadata about the Level 1 metadata, and infoset metadata is

tertiary or Level 3 metadata about the Level § and Level 2 metadata.

US 8,886,628 B1

Sheet 6 of 7

Nov. 11, 2014

U.S. Patent

"PI0321 SOYXHAN © JO JUOIUOD DARRISIUIPE 2] J0] / SIS 008 "PIOIDT BIEP SIXHAN © S8 SP[oy

PI009I BIBP SY00d PUR TVINOd Yeq Jo 952I01s pAeIZaiul 14 JOAISS USISop PAUIqUIODd SIXHN JOJ [opoul aseqeiep [euoney] 9 amsL]

RIS,

WUREITINST

“aosssssssodt

DG

e UOERRInNOY

“PI0II SAIXAN € JO TUSIUOD SANRDSIUNUPR-UOU 2} 10] 9 anFL] 238 “1oA1es UFISop paurquiod §AYXHAN a1 10§ 21qes

UTEUI O]} 0} UOTIR[AI U JUSUIOSRURI JUATR PUR WA}SAS 107 so[qe) Hoddns sanensunupr pue AII[IXne oy} I0] [OPO ASRGRIVP [RUONR[Y iy, 2IndL]

US 8,886,628 B1

Sheet 7 of 7

Nov. 11, 2014

U.S. Patent

Amganeny

LNTRESHY
28 S

jenpdELIaR]
SRR

SRS

o

Y

PHURTIBEORE

£ S

AHIRDSD

512

T

HOPEIRS L STRERIGOOES GRT

UOPIGERIDPICIEY
SREST AR AN Y WAt
FRRENERSFCIIADIORATHD0RY

o aay
RO

US 8,886,628 B1

1
MANAGEMENT OF MULTILEVEL
METADATA IN THE PORTAL-DOORS
SYSTEM WITH BOOTSTRAPPING

1 CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from provisional patent
applications

61/159,773 Bootstrapping System for the PORTAL-DOORS
Cyberinfrastructure with Self-Referencing and Self-De-
scribing Features by Carl Taswell, filed Mar. 12, 2009,

61/348,224 Metadata Management Methods for the POR-
TAL-DOORS System with Bootstrapping, Self-Referenc-
ing, Self-Describing and Multilevel Features by Carl
Taswell, filed May 25, 2010,

61/412,280 Improving Search Query Efficiency by Maintain-
ing the Integrity of Problem Oriented Domains in the POR-
TAL-DOORS System by Carl Taswell, filed Nov. 10,2010,

and relates to a prior patent application

Ser.No. 11/859,741 PORTALS and DOORS for the Semantic
Web and Grid by Carl Taswell, filed Sep. 21, 2007,

that was approved as patent

U.S. Pat. No. 7,792,836 PORTALS and DOORS for the
Semantic Web and Grid by Carl Taswell, issued Sep. 7,
2010.

2 BACKGROUND OF THE INVENTION

The present invention generally relates to managing online
metadata about online and offline resources, i.e., managing
online data that locates and describes resources which may be
either online or offline. More specifically, as a resource meta-
data management system, the invention provides a mecha-
nism for addressing the internet and accessing the semantic
web and grid. The PORTAL-DOORS System has been
described in the applicant’s prior U.S. Provisional Patent
Application 60/94,451 filed on 17 Jun. 2007 [1] and United
States Patent Application 20080313229 which was filed 21
Sep. 2007, published 18 Dec. 2008, and issued 7 Sep. 2010 as
U.S. Pat. No. 7,792,836 with all related prior art including
other patents as cited therein [2].

The present invention improves upon the prior invention by
adding new methods to the PORTAL-DOORS System that
address the following problems:

How to improve the efficiency of communications and
operations between different network nodes within the
system at different stages of development and build-out
of the distributed network of registrars, registries and
directories.

How to improve the efficiency of analysis of metadata
contained within the records maintained by the distrib-
uted network of registrars, registries and directories.

How to enable metadata records, considered secondary
resources, to provide information about other metadata
records, considered primary resources, when the respec-
tive authors of the primary and secondary resources are
different.

How to define and differentiate one problem oriented
domain from another in the PORTAL-DOORS System
in order to improve the efficiency of performing search
queries within each problem oriented domain.

Solutions to these problems are described herein and in the
Provisional Applications 61/159,773, 61/348,224, and
61/412,280 with their attachments of manuscripts previously
submitted with the Provisional Applications. Those manu-
scripts have since been published as

10

20

25

30

35

40

45

50

55

60

65

2

Alternative Bootstrapping Design for the PORTAL-
DOORS Cyberinfrastructure with Self-Referencing and
Self-Describing Features by Carl Taswell, in Semantic
Web; Wu, G., Ed.; IN-TECH Publishing, 2009; chapter
2, pp- 29-7,

A Distributed Infrastructure for Metadata about Metadata:
The HDMM Architectural Style and PORTAL-DOORS
System by Carl Taswell, 2010 Future Internet 2(2):156-
189,

Concept Validating Methods for Maintaining the Integrity
of Problem Oriented Domains in the PORTAL-DOORS
System by Carl Taswell, in AMIA IDAMAP 2010: Intel-
ligent Data Analysis in Biomedicine and Pharmacology,
November 2010, Washington D.C.; pp. 78-79 in Work-
shop Notes edited by K. T. Phillips and S. Swift,

which are also attached and incorporated herein.

2.1 Hierarchically Distributed Mobile Metadata

IRIS registries [3] and DNS directories [4] provide the
model for the architectural style that inspired the design of
PORTAL registries and DOORS directories [5]. The most
essential characteristics of this Hierarchically Distributed
Mobile Metadata (HDMM) architectural style can be sum-
marized by the following principles:

1. Distributed infrastructure: Pervasively distributed and
shared infrastructure, content, and control of content
including distributed and shared control over both the
contribution and distribution of the content defined as
the mobile metadata records.

2. Hierarchical authorities: A hierarchy of both authorita-
tive and non-authoritative servers (root, primary, sec-
ondary, forwarding and caching) enabling global
interoperable communication and exchange of the
mobile metadata records while permitting independent
administrative control of local policies governing the
publication and distribution of the metadata records.

3. Mobile metadata: A focus on moving the mobile meta-
data for who what where as fast as possible with perva-
sive distribution and redistribution from servers in
response to requests from clients that access non-au-
thoritative local forwarding and caching servers updated
regularly by the authoritative servers.

4. Separated concerns: A separation of concerns with reg-
istries for identifying resources and directories for locat-
ing resources that have been globally uniquely identified
in the registries.

5. Unrestricted identification: A relative freedom of choice
in the selection of identifiers with purposeful absence of
any requirement to use the same root name or label for
all identifiers, thus enabling essentially unrestricted
choice of naming or labeling schemes for identification
and thereby avoiding monopolistic control by any single
organization.

Users of today’s web browsers may not be familiar with the
engineering of the hidden infrastructure system that enables
them to navigate to any web site around the world. Butitis the
IRIS-DNS infrastructure system, which is responsible for
registering domain names and mapping them to numerical IP
addresses, that makes it possible for the user to browse the
web in such an effortless manner almost always without ever
typing, seeing, or even being aware of the existence of the
numerical IP addresses.

Moreover, from the user’s perspective, what is most impor-
tant now is that the speed of this conversion from domain
name to [P address occurs so rapidly that the user does not
experience it as a hindrance or delay in browsing. Even if the

US 8,886,628 B1

3

particular web page itself downloads and displays slowly,
usually at least the web site address is found quickly. And that
happens because the small amount of metadata (domain name
and IP address) moves so quickly across the internet even if
the larger amount of data (web page text and media) does not.
Because of this important point, the phrase Hierarchically
Distributed Mobile Metadata and acronym HDMM was
introduced (9 May 2009 at www.portaldoors.org) as a name
for this architectural style that characterizes both IRIS-DNS
and PORTAL-DOORS.

10

4

of the term hierarchical pertains to the distribution of meta-
data records but not to the identification of resources (see
Table 1).

Whereas IRIS-DNS implements the HDMM architectural
style for the original web, PORTAL-DOORS extends and
implements this style for the semantic web and grid. Table 1
summarizes some of the similarities and differences between
PORTAL-DOORS and IRIS-DNS from the perspective of
considering both as distributed online database systems with
entity registering and attribute publishing implemented with
the HDMM architectural style (see HDMM Principles 1-5).

TABLE 1

HDMM Systems with Entity Registering and Attribute Publishing

IRIS-DNS System PORTAL-DOORS System

Dynamic metaphor

Static metaphor

Registering system

Entity registered
Identified by

Publishing system
Attributes published

Specified by

Entity identification
Record distribution

Serves original web

Serves semantic web

Crosslinks entities

Crosslinks systems

A distributed communications network brain of nodal neurons continuously
updating, exchanging, and integrating messages about ‘who what where’
A simple phonebook A sophisticated library card catalogue
IRIS registries PORTAL registries

domain resource

unique name unique label with optional tags

DNS directories DOORS directories

address and aliases locations and descriptions

IP numbers URIs, URLs, RDF triples referencing
OWL ontologies

Non-hierarchical URI

Hierarchical request forwarding and
response caching

Yes, via mapping of character label to
URL for IRIS-DNS

Yes, via mapping of character label to

Hierarchical URL

Hierarchical request forwarding
and response caching

Yes, via mapping of character
name to numeric address

No, because IRIS-DNS does not

use RDF triples semantic description

No Yes, via mappings within DOORS
descriptions to other resources

No Yes, via mappings within PORTAL

cross-references to other systems

The term mobile metadata emphasizes the principle that
the metadata moves throughout the distributed network of
nodes which may include both stationary nodes such as wired
rackmount servers and mobile nodes such as wireless hand-
held devices. When considering the latter case, the movement
ofthe mobile metadata and the movement of the mobile node
must be understood as different kinds of mobility. More gen-
erally, mobile metadata must be distinguished from mobile
software and from mobile systems. Further, in the acronym
HDMM, the MM serves as a mnemonic not only for Mobile
Metadata but also for Metadata about Metadata, while the D
recalls not only Distributed referring to location but also
Dynamic referring to content. In other words, the metadata
may both move to distributed and redistributed locations
throughout the network, and also change frequently or inter-
mittently with dynamically updated content.

These HDMM principles do require hierarchical control
and distribution of metadata records, but do not require hier-
archical identification of resources. Whereas IRIS-DNS does
employ a hierarchical identification scheme with top-level
domain names, domain names, and sub-domain names, POR-
TAL-DOORS does not require any such hierarchical naming
scheme. In fact, PORTAL-DOORS allows complete freedom
with an identification scheme for which globally unique
labels are simply required to be URIs. These URIs may or
may not be hierarchical, and they may or may not be resolv-
able URLs, as long as they are URIs. However, both IRIS-
DNS and PORTAL-DOORS systems do employ hierarchical
control and distribution of metadata records. Thus, for the
purposes of defining an architectural style applicable to both
IRIS-DNS and PORTAL-DOORS, the interpretation and use

40

45

50

55

60

65

3 BRIEF SUMMARY OF THE INVENTION

The present invention builds upon the prior PORTAL-
DOORS System comprised of a distributed network of reg-
istrars, registries and directories for resource metadata man-
agement (U.S. Pat. No. 7,792,836) by the addition of the
following new methods:

A more efficient method advantageous during early stages
of PORTAL-DOORS System adoption and use when it
is more convenient to integrate all registrar, registry and
directory functionalities into a single combined compo-
nent named NEXUS.

A more efficient method with self-referencing and self-
describing features embodied in the data structures in
such a way as to minimize the number of different struc-
tures and reduce their overall complexity.

A method that can co-exist with the original method such
that the PORTAL functionality can reside both in sepa-
rate PORTAL components and in the new combined
NEXUS component.

A method that can co-exist with the original method such
that the DOORS functionality can reside both in sepa-
rate DOORS components and in the new combined
NEXUS component.

A method that adds a new mechanism with record status
codes for exchanging information about the status of
related records between the PORTAL, DOORS, and
NEXUS components.

A method that optimizes PORTAL functionality for lexical
search, DOORS functionality for semantic search, and
NEXUS functionality for both lexical and semantic
search.

US 8,886,628 B1

5

A method that enables a multilevel management of meta-
data about metadata with entity metadata, record meta-
data and infoset metadata.

A method that enables management of metadata for
metaresources, which are secondary resources about
primary resources.

Methods to define and differentiate one problem oriented
domain from another in the PORTAL-DOORS System
and thereby to maintain the integrity of each domain.
These methods enable the efficiency of performing
search queries within each domain to be improved
because there are no irrelevant or inappropriate records
that slow the search in each domain.

Methods to allow a variety of means to test for the presence
of'required concepts and thereby to validate each record.
These methods offer greater flexibility in the use of the
system by enabling metadata records to be validated
through tests either on the name, nature, supporting tags,
or supporting labels on the PORTAL side or on the
description on the DOORS side of the PORTAL-
DOORS System.

Methods to perform the validation test by ordering the
sub-tests from fastest to slowest with termination of the
sequence of sub-tests on first success in order to provide
the most efficient approach to complete the validation
test.

Methods to delete or otherwise to move a metadata record
to a different domain if that metadata record fails the
validity test for the problem oriented domain in order to
assure that the integrity of each problem oriented
domain corresponding to a defined PORTAL registry is
not compromised, and thus, the efficiency of search is
not compromised.

4 BRIEF DESCRIPTION OF THE DRAWINGS

Each of these drawings have already appeared in similar
form in the prior patent [2] and/or prior publications [5, 6] by
the inventor:

FIG. 1 displays a block diagram illustrating a general pur-
pose computer.

FIG. 2 displays a block diagram illustrating an exemplary
physical and logical view of the operation of the present
invention with a user interacting with a computer and other
distributed network devices connected by the internet.

FIG. 3 displays a diagram summarizing the basic structure
of an exemplary PORTAL data record and a DOORS data
record each with both required and permitted fields, in accor-
dance with one embodiment of the present invention.

FIG. 4 displays a diagram representing an exemplary POR-
TAL-DOORS distributed hierarchical database system with
the PORTAL and DOORS networks of root, authoritative,
and non-authoritative servers all interacting with each other,
in accordance with one embodiment of the present invention;

FIG. 5 displays a schema of the top level of a resource

representation with multilevel metadata comprised of entity
metadata, record metadata and infoset metadata.
Each of these drawings displays a diagram of a relational
database model in a manner that is standard in the database
industry with diagram elements representing the tables, the
columns within each table, and the relationships between the
primary keys and foreign keys of each table:

FIG. 6 shows the relational database model for a NEXUS
combined design server with integrated storage of both POR-
TAL and DOORS data record fields as a NEXUS data record.
This figure displays the master-detail relationships for the
non-administrative content of a NEXUS record.

20

25

30

35

40

45

50

55

60

65

6

FIG. 7 shows the relational database model for the auxil-
iary and administrative support tables for system and agent
management in relation to the main table for the NEXUS
combined design server. This figure displays the master-de-
tail relationships for the administrative content of a NEXUS
record.

5 DETAILED DESCRIPTION OF THE
INVENTION

5.1 Combined Versus Separate Architectural Models

PORTAL-DOORS has been designed to be as flexible as
possible with both backward and forward compatibility from
Web 1.0 to Web 3.0. Given the partition with lexical non-
semantic services on the PORTAL side and semantic services
(with use of the RDF/OWL/SPARQL stack) on the DOORS
side, and also the partition with both required and permitted
elements for each of PORTAL and DOORS, there are many
possible scenarios for usage of the entire PORTAL-DOORS
System. Some examples include:

Minimal use of required elements for both PORTAL reg-
istries and DOORS directories: This scenario essentially
reduces use of the system to an alternative equivalent to
the use of PURLs [7] (and other similar services). How-
ever, it does so without requiring use of a pre-determined
URL identifier root like purl.ocic.org and instead allow-
ing use of any identification scheme as long as it is a URI
or IRI.

Maximal use of permitted elements for PORTAL registries
but minimal use of required elements for DOORS direc-
tories: This scenario enables exploiting the full metadata
management facilities of the PORTAL non-semantic
services (which include provisions for tags, micro-for-
mats, cross-references, etc) without any obligation to
use the DOORS semantic services (that necessitate use
of the RDF/OWL/SPARQL stack of technologies and
tools). This scenario enables resource agents to publish
metadata now in non-semantic formats and defer until
later any possible transition to semantic formats which
would then be facilitated by the prior staging in the
non-semantic formats.

Minimal use of required elements for PORTAL registries
but maximal use of permitted elements for DOORS
directories: This scenario serves those situations where
there is no barrier to transition the metadata from origi-
nal web formats to semantic web formats, and the
resource owner and agent do not wish to maintain the
metadata in both semantic and non-semantic formats.
This scenario requires that the resource agent registering
and publishing the metadata already has access to estab-
lished ontologies that can be referenced by semantic
tools for describing the resource.

Maximal use of permitted elements for both PORTAL reg-
istries and DOORS directories: This usage scenario pro-
vides the significant benefit of exposing as much meta-
data as possible to as many clients as possible including
both older non-semantic as well as newer semantic tools
and applications.

Consideration of these scenarios when further motivated
by the goal of building a more efficient and less complex
approach to bootstrap the distributed network system results
in the architectural design of the new combined NEXUS
architectural model for a server node that integrates the
resource metadata and functionalities of separate nodes cor-
responding to each of a PORTAL registry and a DOORS
directory.

US 8,886,628 B1

7

Separate PORTAL-DOORS model with separate indepen-
dent servers for each PORTAL registry and DOORS
directory: A PORTAL serveris an online database server
capable of storing and exchanging PORTAL metadata
records in PDS PORTAL format. The PORTAL server
provides user read-only access to PORTAL records viaa
PORTAL registry service and agent read-write access to
PORTAL records via a PORTAL registrar service. A
DOORS server is an online database server capable of
storing and exchanging DOORS metadata records in
PDS DOORS format. The DOORS server provides user
read-only access to DOORS records via a DOORS
directory service and agent read-write access to DOORS
records via a DOORS registrar service.

Combined NEXUS model with a combined integrated
server for both PORTAL registries and DOORS direc-
tories: A NEXUS server is an online database server
capable of storing and exchanging NEXUS metadata
records in PDS NEXUS format, PORTAL records in
PDS PORTAL format or DOORS records in PDS
DOORS format. The NEXUS server provides user read-
only access to NEXUS records via a NEXUS registry-
directory service and agent read-write access to NEXUS
records via a NEXUS registrar service.

Therecord fields that comprise a NEXUS metadata record are
the union of the record fields for a PORTAL metadata record
and a DOORS metadata record. Thus a single combined
NEXUS registry-directory server can stand in the place of
both a separate PORTAL registry server and a separate
DOORS directory server, thereby reducing the complexity of
the system when bootstrapping the system. Since the com-
bined model architecture can co-exist with the separate model
architecture, when bootstrapping is no longer necessary, a
phased transition can occur so that the efficiencies of the
separate model can later be exploited when appropriate.

5.2 Multilevel Metadata

Managing the mobile metadata, both conceptually and
technically, with regard to a hierarchy of metalevels also
serves the goals of improving the efficiency of metadata
analysis and search. Analysis of the metalevels hierarchy
begins with consideration of the collection of objects relevant
to the resource in varying contexts.

1. Resource entity: The object of interest considered by the
registrant to be the resource whether concrete or
abstract, online or offline, semantic or lexical, real or
virtual. This resource entity may be registered at a par-
ticular PORTAL registry only if it satisfies the registra-
tion requirements of that PORTAL registry. Depending
upon the problem-oriented specialty domain of the
PORTAL registry and its registration policies, examples
may include persons, patients, investigators, authors, or
organizations; online virtual entities or offline physical
entities; data services, data storage tools, and data
records (independent of and unrelated to any PORTAL-
DOORS metadata record); analysis services and data
processing tools; authored information, books, journals,
papers, web sites, and web pages; and many other
examples and categories within any field of interest
defined by the administrators of the particular PORTAL
registry.

2. Resource record: The database object containing infor-
mation about the resource entity for the purpose of per-
sistent storage. This resource record is stored in a data-
base at a PDS server (a PORTAL, DOORS, or NEXUS
server). Note that for the same resource entity, the infor-

20

25

30

35

40

45

50

55

60

65

8
mation stored in a resource record at a PORTAL,
DOORS, or NEXUS server will be different, and may
also be different within each of the networks of POR-
TAL, DOORS, and NEXUS servers depending on their
operation as authoritative primary or non-authoritative
secondary and caching servers.

3. Resource infoset: The memory object containing infor-
mation about the resource entity for the purpose of man-
aging, displaying, and analyzing the information about
the resource entity of interest. This resource infoset is
assembled by the responding PDS server that gathers all
of the relevant information from possibly multiple dis-
tributed records located at various different PORTAL,
DOORS, and NEXUS servers.

4. Resource representation: The serialized object, obtained
from the memory object, representing all of the infor-
mation collected and assembled about the resource
entity for the purpose of interoperable information
exchange compliant with the PDS interface. One or
more of these resource representations are sent by the
PDS server in response to requests from clients if the
server is configured to return a response without a mes-
sage envelope.

5. Resource message: The message object containing one
or more serialized resource representations within an
envelope for the purpose of interoperable information
exchange compliant with the PDS interface. This
resource message is exchanged between different PDS
servers and/or is sent by the targeted PDS server in
response to requests from clients.

The term information is used in the list above in a general
sense referring to content without implying any special con-
notations about a hierarchy of metadata levels. This term
information will continue to be used to refer to any part of the
content collectively contained in all of the metadata levels
independent of any discussion of data versus metadata versus
meta-metadata, or of multilevel metadata.

Metadata can be associated with each of the five objects
listed above. The following list summarizes the metadata for
each of the five objects together with the design principles
that govern software implementation for the database, web
service, and interoperable messaging interface schemas for
the PORTAL-DOORS System.

1. Entity metadata: All metadata pertaining to the entity
itself including tags, labels, locations and description of
the entity as well as references to the owner and contact
for the entity; corresponds to PDS schema element Enti-
tyMetadata and considered primary or Level 1 metadata
about the entity itself.

2. Record metadata: All metadata pertaining to the stored
records about the entity and the process of registering
and managing the records including timestamps for cre-
ating and updating the records, references to the govern-
ing registries and directories, as well as references to the
registrant and agents for the records; note that the regis-
trant and agent for the records may be different from the
owner and contact for the entity; corresponds to PDS
schema element RecordMetadata and considered sec-
ondary or Level 2 metadata about the Level 1 metadata.

3. Infoset metadata: All metadata pertaining to the dynamic
infoset about the entity assembled from the distributed
stored records including status, validation timestamps if
validated, and any entailments if inferred by a reasoning
engine; corresponds to PDS schema element Infoset-
Metadata and considered tertiary or Level 3 metadata
about the Level 1 and Level 2 metadata.

US 8,886,628 B1

9

4. Representation metadata: Current design limited to use
with only an identifier as an attribute on a wrapper ele-
ment collating the three elements EntityMetadata,
RecordMetadata, and InfosetMetadata respectively for
the primary, secondary, and tertiary metadata; corre-
sponds to PDS schema type ResourceRepresentation
with element instances PORTAL, DOORS, and
NEXUS.

5. Message metadata: All metadata pertaining to the mes-
saging envelope and the process of exchanging mes-
sages throughout the PORTAL-DOORS System; design
based on using an analogy with the IRIS-DNS System;
corresponds to PDS schema element PDS as the root
element for all PDS messages.

5.3 Metaresources

The original blueprint design [5] specified that resources
can only be registered and managed by owners of the
resources. This design principle yields a system that does not
allow anonymous public editing of resources which is con-
trary to the policies adopted by many wiki systems. However,
it is possible to design a new extension of the initial PORTAL-
DOORS System that maintains the original principle while
also enabling secondary resources to be registered and man-
aged by individuals who are not the owners of the primary
resource. These secondary resources about primary resources
are called metaresources. The secondary metaresources are
declared by specifying their entity type as a special type
called meta-entity. Secondary metaresources are required to
maintain a reference to their targeted primary resources. This
approach assures that all metaresources about the same tar-
geted resource can refer consistently to that resource yet be
managed independently of it as the primary resource and of
each other as the other secondary resources. A scientific jour-
nal article as primary resource with multiple reviews as sec-
ondary metaresources constitute a simple example. All of the
referees who write the secondary reviews and the authors who
write the article should have control over their own resources
without interference by others.

5.4 Problem Oriented Domains

The PORTAL-DOORS System specifies a set of data
exchange interface requirements that facilitate interoperabil-
ity and search across problem oriented domains for both the
original web and semantic web [5]. The administrators for
any PORTAL registry may declare a set of constraints which
define the focus of its specialty domain or problem scope as a
Problem Oriented Registry of Tags And Labels. Resource
representations entered as records for a given PORTAL reg-
istry should be validated against the set of constraints defined
for that registry. If the representations are not validated for the
registry within the time period required by that registry, the
records considered invalid should either be deleted from the
registry or else moved to a different more appropriate registry
[5]. Failure to do so, ie, failure to maintain the integrity of the
domain scope for each registry by allowing irrelevant and/or
inappropriate records to remain in any registry would defeat
one of the most important purposes of building a problem
oriented registry system.

The original PDS design [5] introduced supporting tags
(formatted as text phrases) while the revised PDS design [6]
subsequently introduced supporting labels (formatted as
URIs) for metadata records describing resources. Supporting
tags are intended for use with text phrases in a manner con-
sistent with current conventional free-text tagging systems.

20

25

30

35

40

45

50

55

60

65

10

Supporting labels are intended for use with URIs in a manner
that references a controlled vocabulary, terminology or the-
saurus as demonstrated in [8] for the NLM MeSH 2010 The-
saurus. All of the supporting tags and/or supporting labels for
metadata records are marked as either restricted or unre-
stricted with regard to the registry’s problem oriented con-
straints. If the tag or label is marked restricted, then it is
subjected to validity testing for the restrictions imposed by
the registry’s constraints. If the tag or label is not marked
restricted, then it is not validity tested. This approach enables
each metadata record to be curated with some tags and labels
that are validity tested as well as some that are not validity
tested, thus permitting an author to provide as much metadata
as desired while adhering to the restrictions required by the
registry for compliance with its problem oriented domain.

6 CONCEPT VALIDATING METHODS

All metadata records entered in a PORTAL registry are
concept validity tested for compliance with any concept
restrictions imposed by the scope definition declared by the
administrators of the registry. For example, the GeneScene
PORTAL Registry requires that any registered resource must
maintain a metadata description with concepts relating to
genetics, genes, DNA, RNA, etc, whilethe ManRay PORTAL
Registry requires that resource records contain descriptions
with concepts relating to radiopharmaceuticals, molecular
imaging or nuclear medicine.

For the exemplary embodiment (see below), several con-
ventions have been adopted to facilitate initial entry of meta-
data records. The elements entity name and entity nature are
considered special automatically restricted supporting tags,
ie, supporting tags that are always automatically marked as
restricted and thus always validity tested. Further, the algo-
rithm tests in order first the entity name and entity nature, then
any other restricted supporting tags, and last any restricted
supporting labels terminating with successful validation as
soon as possible. In other words, if the name and nature are
sufficient to validate the record successfully then the other
tags and labels are not tested.

The PORTAL-DOORS System employs a bootstrapping
design with a self-referencing self-describing approach [9].
Thus, the metadata record for a resource that is a PORTAL
Registry itself contains the lists of constraints used to define
the problem oriented domain for the registry. These lists can
be found in the registry restrictions element of the other
metadata element for metadata records available at

http://pds.portaldoors.org/npds/portal

for any of the registries selected by its name, for example,

http://pds.portaldoors.org/npds/portal/genescene/npds/

portal/genescene
http://pds.portaldoors.org/npds/portal/manray/npds/por-
tal/manray
http://pds.portaldoors.org/npds/portal/osler/npds/portal/
osler
http://pds.portaldoors.org/npds/portal/helpme/npds/por-
tal/helpme
each of which contains the word stems and phrases used for
validity testing tags and the thesaurus concepts used for valid-
ity testing labels of other metadata records entered in that
registry.

Note that an author or curator of a metadata record may
choose an arbitrary number of either supporting tags and/or
supporting labels to describe the resource entity. These tags
and labels may or may not be related to the defining concepts
that restrict the problem oriented domain for the PORTAL
registry. To provide a more complete description of aresource

US 8,886,628 B1

11

entity, an author may choose to use some tags and labels that
relate directly to the defining concepts for the PORTAL reg-
istry and some that do not. Thus, there is good cause for both
restricted and unrestricted tags and labels. However, keep in
mind that currently the concept validating methods for the
records in the registry first evaluate the restricted supporting
tags (including entity name and entity nature) and then the
restricted supporting labels.

For the 4 registries presented above to demonstrate the use
of restrictions to maintain the integrity of problem oriented
domains, their scopes are declared essentially as genetics for
GeneScene, nuclear medicine for ManRay, personalized
medicine for Osler, and Health Education Law Public Policy
and Medical Ethics for HELPME where detailed lists of word
stems, word phrases, and thesaurus concepts can be reviewed
by browsing the metadata record links above for each registry.
These lists contain elements with the attributes AndIndex and
Orindex which correspond to the simple conjunctive and
disjunctive Boolean logic that is used in the concept validat-
ing algorithm. The current embodiment validates records for
presence of concepts. An alternative embodiment could pro-
vide additional tests for absence of concepts.

6.1 Exemplary Embodiment

An exemplary embodiment of the invention requires the
first of the following kinds of components all of which can
co-exist and interact with each other:

1. A NEXUS server operating in combined mode as an
integrated registrar/registry/directory with functionality
equivalent to that combined from both a PORTAL reg-
istry and a DOORS directory with a registrar,

2. ANEXUS server operating in separate mode as a regis-
trar for separate PORTAL registry and DOORS direc-
tory servers,

3. A PORTAL server operating in separate mode with
PORTAL registry functionality,

4. A DOORS server operating in separate mode with
DOORS directory functionality.

Alternative embodiments allow the co-existence and opera-
tion of all components (NEXUS, PORTAL, and DOORS
servers) with NEXUS servers operating in both separate and
combined modes. Each of the components must implement
multilevel metadata management methods for metadata
about metadata and for metaresources about resources.

When providing registrar services for separate PORTAL
and DOORS nodes, NEXUS registrars operate in a manner
consistent with the original separate design. However, when
providing registrar services for a combined PORTAL-
DOORS node, NEXUS registrars can also operate in a man-
ner that enables integrated storage of both PORTAL and
DOORS record data on the same server as currently imple-
mented in version 0.6 and reported here. FIG. 6 displays a
diagram depicting the relational database model for the draft
version 0.6 of the PDS schemas available at www.portaldoor-
s.org. This data structure model shows the primary and for-
eign keys that provide referential integrity constraints for the
relational database tables of a NEXUS server node in the
network system. FIG. 7 displays the main table in relation to
the auxiliary and administrative support tables for managing
agent access to the system.

These figures present conventional diagrams for relational
database models. Each part represents a database table iden-
tified with its name at the top and its column field names listed
below the table name. The key symbols indicate the primary
keys for each table and the connecting lines point to the

20

25

30

35

40

45

50

55

60

12

foreign keys of another table. More detailed explanations of
the parts identified and named in the diagram appear in the
following paragraphs below.

All PDS tables in the database are named with the prefix
pds_to distinguish them from the tables of other administra-
tive providers such as Microsoft’s ASP.net authentication and
authorization services and their database tables named with
the prefix aspnet_. Further, in order to simulate management
of PORTAL, DOORS, and NEXUS network nodes at the
same site in the same database, the tables for each of these
servers are named respectively with the prefixes pds_P,
pds_D, and pds_N while tables common to all three server
types are named with the prefix pds_A. In the following
discussion, the prefix pds_ appears in the figures but not in the
text where it should be assumed.

With a conventional master-detail relationship, the table
NResource serves as the main table for NEXUS resource
records with primary key ResourcelidKey (an integer identi-
fier) for the related records connected in a one-to-many rela-
tionship via foreign keys ResourcelidRef in each of the
dependent tables NTagAndLabel, NLocation, NCrossRefer-
ence, NSupportingTag, NSupportingl.abel, NSecondaryReg-
istry, and NSecondaryDirectory. With the column ordering
for the main table NResource as displayed in FIG. 6, note that
the fields displayed above the primary key ResourcelidKey
are entity metadata fields whereas those displayed below the
primary key are first the record metadata fields and then the
infoset metadata fields.

Because of the conceptual distinctions between the differ-
ent kinds of metadata and the different ways that the metadata
can be used, providing distinct keys for the different subsets
of metadata offers greater convenience for various usage
interface and programming contexts. The primary key
ResourcelidKey is intended mostly for internal use with the
foreign keys ResourcelidRef by the database to maintain the
master-detail relationships between the main and dependent
tables for the virtual record created for each resource. All
other keys visible as explicit fields in the main table NRe-
source of FIG. 6 are considered optional: EntityHidKey is a
T-SQL hierarchical identifier for the entity, RecordHandle is
a character string identifier for the record, and InfosetGuid-
Key is a T-SQL globally unique identifier for the infoset.

Technically, the PDS design specification requires only the
resource label as the globally unique identifier for the
resource metadata record. Although not visible as an explicit
field, it is available as the EntityCanonicall.abel from a
T-SQL view on the related tables NResource and NTagAnd-
Label. Data types for the optional keys have been chosen to
facilitate conventions as well as meaningful intended uses.
For example, ResourcelidKey as an integer is used to main-
tain all master-detail table relations for a single resource (see
in FIG. 6 all foreign keys linking into the right side ofthe field
ResourcelidKey in the table NResources), while Infoset-
GuidKey as a guid (the T-SQL uniqueidentifier datatype) is
used to maintain all references from one resource to another
distinct resource within the self-referencing self-describing
scheme of the relational data model (see in FIG. 6 all foreign
keys linking into the left side of the field InfosetGuidKey in
the table NResource).

As another example, short-length character string handles
for a record are more appropriate for agents (if persons, not
webbots) editing the record at a single site, whereas medium-
length guids for an infoset are more appropriate for servers
communicating and exchanging records between multiple
PDS sites. For internal PDS processing (interpreted as either
within a single PDS server or within the PDS network
between PDS servers), medium-length guids can also be

US 8,886,628 B1

13

more convenient than potentially very long-length labels
assuming that the guids and labels are maintained in a strict
one-to-one mapping correspondence for the same resource.

Using more than one identifier (i.e., in addition to the
required resource label), such as the example pair of both a
record handle and a resource label, also enables the agent to
maintain the information for the resource entity—even
changing the label—without being required to delete the
record and create a new record. The new facility that enables
the use of alias labels together with the canonical label for a
resource entity provides another mechanism to achieve a
similar task while also enabling use of multiple different
identifiers appropriate in different contexts or at different
times. In this case, both a newer alias and an older alias can be
maintained in addition to the canonical label if desired. Alter-
natively, an alias label can be re-declared to be the current
canonical label.

For the resource entity metadata within the main table
NResource, there are three directly self-referencing relations
from fields with the suffix _GuidRef to three other resources
for the EntityOwner, EntityContact, and EntityOther. Any
resource may be registered with references EntityOwner and
EntityContact to other resources for the entity owner and
contact, but only metaresources of the special type meta-
entity may be registered with a reference EntityOther to the
targeted primary resource. In fact, the metaresource cannot be
validated without this reference EntityOther. For the resource
record metadata within the main table NResource, there are
four directly self-referencing relations from fields with the
suffix _GuidRef to four other resources for the EntityRegis-
trant, EntityRegistrar, EntityRegistry, and EntityDirectory.

There is no requirement that the necessary information for
all of these seven other possible resources be stored at the
same NEXUS server node. However, if so, then each can be
referenced via the _GuidRef, and if not, then it can be refer-
enced via the analogous _Label fields (not shown in FIG. 6).
For example, the resource for the EntityContact can be refer-
enced internally via the EntityContactGuidRef or externally
via EntityContactlabel. Check constraints can be used to
prevent both the _GuidRef and the _Label for the EntityCon-
tact from being simultaneously non-null. Alternatively,
appropriate programming logic can be used to maintain pre-
cedence of the internal reference via the _GuidRef over the
external reference via the _Label, or vice versa, depending on
the non-null values of these fields in the context of the status
of the boolean field RecordIsCachedCopy.

For the resource record metadata within the main table
NResource, there are also three indirectly self-referencing
relations from fields with the suftix _ByAgentlidRef to three
other potential resources for the RecordCreatedBy, Recor-
dUpdatedBy, and RecordManagedBy agents. The indirect
self-referencing via the auxiliary linking table NAgent (see
FIG. 7) provides a simple permission management system
implemented with the feature of sufficient flexibility to inter-
face with various user account provider systems, and simul-
taneously, to render optional the publication of any informa-
tion pertaining to agents as resources distinct from owners,
contacts and registrants.

Thus, the linking table NAgent mediates between the set of
tables for PDS and another set of tables for the authentication

20

25

30

35

40

45

50

55

14

and authorization system for managing agent access to insert-
ing, updating, and deleting records in the NEXUS tables. The
linking table has a primary key AgentlidKey and various
alternative optional fields available for linking to user mem-
bership providers such as the field AspnetUserGuidRef for
linking to Microsoft’s ASP.net membership provider, Oth-
erUserGuidRef for linking to an alternate generic user mem-
bership provider, etc. In addition, the table NAgent provides
the foreign key AgentInfosetGuidRef for linking back to a
resource in the main table NResource for use in a scenario
where the agents as persons with responsibility for managing
resources in the database are themselves identified and
described as resources in the main table.

Regardless of whether an agent is published as a resource,
or vice versa, whether a resource is an agent, registrant or
contact of type person or of any other type, all resources may
be flagged as non-publishable by the boolean field Infos-
etlsPrivate in the table NResource. Also, regardless of code
implementation with persistence of the value stored in the
field EntityLabel or otherwise computed dynamically by con-
catenation of the EntityPrincipalTag with the label of the
entity’s registry, it should be emphasized that any PDS imple-
mentation must maintain the important requirement of
uniquely identifying resources by the resource entity label
which must be an IRI or URI.

An exemplary embodiment of the invention must also
require the following components:

1. For each PORTAL Registry corresponding to a problem
oriented domains, a means for establishing and storing
the required concepts for a record to be validated in the
domain wherein each concept must be represented as a
character sequence, or word stem, or URI for a termi-
nology term, or URI for a thesaurus concept, or URI for
an ontology concept.

2. A matching algorithm for testing the metadata elements
of the PORTAL Registry record for the presence of any
of the required character sequences, word stems, termi-
nology term URIs or thesaurus concept URIs.

3. A matching algorithm for testing the metadata elements
of the same registered resource entity at the correspond-
ing DOORS Directory record for the presence of any of
the required ontology concept URIs.

4. A workflow algorithm for ordering the sequence of sub-
tests within the overall validation test for the pair of
PORTAL and DOORS metadata records for each regis-
tered resource entity that terminates as early as possible
upon first successful pass of the validation test.

5. A means for deleting the corresponding PORTAL and
DOORS metadata records for any resource entity that
does not validate successfully within the time required
by the PORTAL Registry. Alternatively, a means for
moving and/or modifying the records so that they are
re-registered in an alternative more appropriate domain
within which the resource entity does validate success-
fully or within which no validation is required.

The following T-SQL code demonstrates an exemplary
embodiment of the most important concept validating algo-
rithms:

CREATE PROCEDURE [dbo].[pds_NResourcelnfosetVali-
dateAtPortal](

US 8,886,628 B1
15 16

CREATE PROCEDURE [dbo]. [pds_NResourcelInfosetValidateAtPortall] (

US 8,886,628 B1
17 18

@ResourcelidKey int,
@PdsAgentIid int,
@StatusAtPortal tinyint output)
AS

BEGIN

SET NOCOUNT ON;

DECLARE @IsEditor bit, @IsAdmin bit;
SELECT @IsEditor = AgentIsEditor, @IsAdmin = AgentIsAdmin

FRCOM pds_NAgent WHERE AgentIidKey = (@PdsAgentIid;

/* If Agent is not also (Editor or Admin) and does not have Management
permissions, then exit =/

IF (@IsEditor = 0) AND (@IsAdmin = 0) AND NOT EXISTS (SELECT
RecordHandle FROM pds_NResource

WHERE (ResourcelidKey = @ResourcelidKey) AND
(RecordManagedByAgentIidRef = @PdsAgentIid))

RETURN -1;

—-— compute @StatusAtPortal by testing Restricted Tags/Labels
DECLARE @NumTagRestrictions tinyint, @TagsAreValid bit,
@NumLabelRestrictions tinyint, @LabelsArevValid bit;

EXEC pds_NSupportingTagValidate @ResourceIidKey, NULL,
@NumTagRestrictions output, @TagsAreValid output;

EXEC pds_NSupportingLabelValidate @ResourcelidKey, NULL,
@NumLabelRestrictions output, @LabelsArevalid output;

IF (@NumTagRestrictions IS NULL) OR (@NumLabelRestrictions IS NULL)
RETURN -2;

IF (QTagsArevValid IS NULL) OR (Q@LabelsAreValid IS NULL) RETURN -3;

SET @StatusAtPortal = 2;

US 8,886,628 B1
19 20

IF (@NumTagRestrictions > 0) AND (UNumLabelRestricticns > 0)
BEGIN

—-— either/or here assumes that they are harmonized!!!
rather than independent

IF (@TagsAreValid = 1 OR @LabelsArevValid = 1) SET
@StatusAtPortal = 1

ELSE SET @StatusAtPortal = O

END

ELSE IF (@NumTagRestrictions > ()

BEGIN

IT (@TagsAreValid = 1) SET @StatusAtPortal = 1

ELSE SET @StatusAtPortal = 0

END

ELSE IF (@NumLabelRestrictions > 0)

BEGIN

IF (@LabelsAreValid = 1) SET @StatusAtPortal = 1
ELSE SET @StatusAtPortal = 0

END

ELSE -- no restrictions, valid by definition

SET @StatusAtPortal = 1;

-— update main record with counts, status, datetime stamp, etc
UPDATE pds_NResource
SET InfosetPortalStatusCode = @StatusAtPortal,
InfosetPortalStatusTestedOn = GETUTCDATE (),
RecordUpdatedByAgentIidRef = @PdsAgentIid

WHERE (ResourcelidKey = @ResourcelidKey);

RETURN ISNULL (@@ROWCQUNT, 0) ;

END

US 8,886,628 B1
21 22

GO

CREATE PROCEDURE [dbo].[pds_NResourceInfosetValidateAtDoors] (
@ResourceIlidKey int,

@PdsAgentIid int,

@StatusAtDoors tinyint output)

AS

BEGIN

SET NOCOUNT ON;

DECLARE @IsEditor bit, @IsAdmin bit;
SELECT @IsEditor = AgentIsEditor, @IsAdmin = AgentIsAdmin

FROM pds_NAgent WHERE AgentIidKey = @PdsAgentIid;

/+ If Agent is not also (Editor or Admin) and does not have Management
permissions, then exit =/

IF (@IsEditor = 0) AND (@IsAdmin = 0) AND NOT EXISTS (SELECT
RecordHandle FROM pds_NResource

WHERE (ResourcelidKey = @ResourcelidKey) AND
(RecordManagedByAgentIidRef = @PdsAgentIid))

RETURN -1;

-- validate existence of at least one resolveable URL

-—-as either a Label URI that is also URL

--or else a Location that has a URL

DECLARE @TypeCode smallint, @Count int, @LocationExists bit;
—— check for existence of LocationURL

SELECT @Count = COUNT (%) FROM pds_NLocation

WHERE (ResourcelidRef = @ResourcelidKey) AND (LocationURL IS
NOT NULL) ;

-— if none, then check for existence of resolvable labels, URIs that

US 8,886,628 B1
23 24

are also URLs,

--but only for entities that are not components

IF (@Count = 0) BEGIN

SELECT @TypeCode = EntityTypeCode FROM pds_NResource
WHERE (ResourcelidKey = @ResourcelidKey);

—-— check only entities that are not constituents (>=60) or
else are untyped (=0)

IF (@TypeCode »= 60) OR (@TypeCode = Q)

SELECT @Count = COUNT (x) FROM pds_NTagAndLabel

WHERE (ResourcelidRef = @ResourcelidKey) AND
(LabelIsResolvable = 1);

END;

IF (@Count > 0) SET @StatusAtDoors = 1

ELSE SET @StatusAtDoors = 0;

-— update main record with counts, status, datetime stamp, etc
UPDATE pds_NResource
SET InfosetDoorsStatusCode = @StatusAtDoors,
InfosetDoorsStatusTestedOn = GETUTCDATE (),
RecordUpdatedByAgentIidRef = @PdsAgentIid

WHERE (ResourcelidKey = @ResourcelidKey);

RETURN ISNULL (€@ROWCOUNT, 0) ;

END

GO

CREATE PROCEDURE [dbo]. [pds_NSupportingTagValidate] (

@ResourcelidRef int,

@RecordRegistryGuidRef unigqueidentifier = NULL,

US 8,886,628 B1
25 26

@NumRestrictions tinyint output,
@TagsArevValid bit output)
AS

BEGIN

/* use null default option for @RecordRegistryGuid to assure
validation against actual RecordRegistryGuid stored in record

rather than against some arbitrarily different input guid =«/

SET NOCOUNT ON;

DECLARE @EntityTypeCode smallint, @EntityOtherGuid uniqueidentifier,
@EntityOtherRecRegGuid uniqueidentifier, @RetVal tinyint;

SET @Retval = 0;

—— Get the @RecordRegistryGuid if necessary, alsc other fields needed
IF (Q@RecordRegistryGuidRef IS NULL)

SELECT @RecordRegistryGuidRef = RecordRegistryInfosetGuidRef,
@EntityTypeCode = EntityTypeCode, @EntityOtherGuid =
EntityOtherInfosetGuidRef

FROM dbo.pds_NResource WHERE (ResocurcelidKey =
@ResourcelidRef)

ELSE

SELECT @EntityTypeCode = EntityTypeCode, @EntityOtherGuid =
EntityOtherInfosetGuidRef

FROM dbo.pds_NResource WHERE (ResocurcelidKey =

@ResourcelidRef);

—— Check existence of tag restrictions from the Resource’s Registry
using input @RecordRegistryGuidRef
SELECT @NumRestrictions = COUNT (x) FROM

dbo.pds_NRegistryRestrictionOrView

US 8,886,628 B1
27 28

WHERE (RegistryGuid @RecordRegistryGuidRef) AND

(RestrictionIsLabel a);

IF (@NumRestrictions = 0)

BREGIN

SET @QTagsArevValid = 1; -- valid by definition when NO
restrictions exist for the registry

RETURN @RetVal;

END;

—— Check existence of EntityOther and its Registry for MetaResource
EntityTypeCode = 99

IF (QEntityTypeCode = 99)

BEGIN

SELECT Q@EntityOtherRecRegGuid = RecordRegistryInfosetGuidRef
FROM dbo.pds_NResource WHERE (InfosetGuidKey =
@EntityOtherGuid) ;

IF (@EntityOtherRecRegGuid = @RecordRegistryGuidRef) —-- entity
itself and entity other in same registry

BEGIN

SET Q@TagsAreValid = 1; —-- wvalid by definition when
MetaResource record is in same registry as described record
RETURN @RetVal;

END;

END;

—-— Get the regquired tag Restrictions from the Resource’s Registry
using input @RecordRegistryGuidRef

DECLARE (@Restrictions table (AndIndex tinyint, OrIndex tinyint,
Restriction nvarchar (256));

INSERT INTO @Restrictions (AndIndex, OrIndex, Restriction)

SELECT RestrictionAndIndex, RestrictionOrlIndex, Restriction

FROM dbo.pds_NRegistryRestrictionOrView

US 8,886,628 B1
29 30

WHERE (RegistryGuid = @RecordRegistryGuidRef) AND
(RestrictionIsLabel = Q)

ORDER BY RestrictionAndIndex, RestrictionOrIndex;

—— Get the EntityName, EntityNature and SupportingTags for the
Resource using input @ResourcelidRef

——but only those SupportingTags where TaglsRestricted is

true;

-—also note SupportingTag is nvarchar (128) while

EntityNature is nvarchar (256)

DECLARE @TestTags TABLE (TagToken nvarchar (256));

DECLARE @NumTestTags int, @NumMatches int;

INSERT INTO @TestTags (TagToken)

SELECT LOWER (EntityName) FROM pds_NResource

WHERE (ResourcelidKey = @ResourcelidRef);

INSERT INTO @TestTags (TagToken)

SELECT LOWER (EntityNature) FROM pds_NResource

WHERE (ResourcelidKey = @ResourcelidRef);

INSERT INTO @TestTags (TagToken)

SELECT LOWER (SupportingTag) FROM pds_NSupportingTag

WHERE (ResourcelidRef = @ResourcelidRef) AND

(TagIsRestricted = 1);

SELECT @NumTestTags = COUNT (x) FROM @TestTags WHERE (TagToken IS NOT
NULL) ;

—— initialize @TagsAreValid to false for remainder of algorithm
SET QTagsArevValid = 0;
—— If there are tag restrictions (@NumRestrictions > 0) but no test

tags (@NumTestTags = 0),

then return invalid else continue with test

IF (@NumRestrictions > 0) AND (@NumTestTags = 0) RETURN @RetVal;

US 8,886,628 B1
31 32

DECLARE @AndValid bit, @AndIndex tinyint, @AndIdxMax tinyint,
@ANdTdxNum tinyint;

DECLARE @0rvalid bit, @0rIndex tinyint, @OrIdxMax tinyint, @OrIdxNum
tinyint;

—-— Algorithm assumes convention that AndIndex = 0, OrIndex = % lists
phrases with multiple concepts per OrIndex

-— whereas AndIndex >= 1, OrIndex = x lists word stems with one
concept per AndIndex

-— For AndIndex = 0, initialize false until proven true and if true
then return else continue test for AndIndex >= 1

SET @AndIndex = 0;

SELECT QOrIdxNum = COUNT (%) FROM @Restrictions WHERE AndIndex =
@AndIndex;

IF (QOrIdxNum > 0) BEGIN

-— Algorithm assumes (@0rvalid false until proven true (search

loop until "accept" at least one "or")

-— Algorithm assumes that OrIndex numbered seguentially

beginning with 1,2,3,...

SET @0rvalid = 0;

SET @0rIndex 1;

SELECT @OrIdxMax = MAX (OrIndex) FROM @Restrictions WHERE
AndIndex = @AndIndex;

WHILE (@Orvalid = 0) AND (@OrIndex <= @0rIdxMax) BEGIN
SELECT @NumMatches = COUNT (¥) FROM @TestTags WHERE
TagToken LIKE

(SELECT Restriction FROM @Restrictions WHERE

AndIndex = @AndIndex AND OrIndex = @QOrIndex);

IF (@NumMatches > 0) SET @OrValid = 1; —-—- at least one
"OR" has been found so accept (forces exit from inner OR while loop)
SET @O0rIndex = @O0rIndex + 1; -- increment OR index for
inner OR while loop

END;

US 8,886,628 B1
33 34

IF (@0Orvalid = 1) BEGIN
SET @TagsAreValid = 1;
RETURN @RetVal;

END;

END;

—-— For AndIndex »= 1, re-initialize true until proven false (search
loop until "reject" at least one "and")

—— Algorithm assumes that AndIndex numbered sequentially beginning
with 1,2,3,...

SELECT @AndIdxMax = MAX (AndIndex) FROM (@Restrictions;

IF (@AndIdxMax > 0) BEGIN

SET @AndvValid = 1;

SET @AndIndex = 1;

WHILE (@AndvValid = 1) AND (@AndIndex <= @AndIdxMax) BEGIN

—— Algorithm assumes @0rValid false until proven true (search

loop until "accept" at least one "or")

—— Algorithm assumes that OrIndex numbered sequentially

beginning with 1,2,3,...

SET @QO0rvalid 0;

SET @O0rIndex = 1;

SELECT @OrIdxMax = MAX (OrIndex) FROM Q@Restrictions
WHERE AndIndex = @AndIndex;

WHILE (QOrvalid = 0) AND (QOrIndex <= @0rIdxMax) BEGIN
SELECT @NumMatches = COUNT (x) FROM @TestTags

WHERE TagToken LIKE

(SELECT Restriction FROM G@Restrictions

WHERE AndIndex = @AndIndex AND OrIndex = @O0rIndex);

IF (@NumMatches > 0) SET @OrValid = 1; —-- at

least one "OR" has been found so accept (forces exit from inner OR while loop)

SET @O0rIndex = @0rIndex + 1; —-- increment OR

index for inner OR while loop

US 8,886,628 B1
35 36

END;

IF (@0rvalid = 0) SET @Andvalid = 0; -- at least one

"AND" has not been found so reject (forces exist from outer AND while loop)
SET @AndIndex = @AndIndex + 1; —— increment AND index

for outer AND while loop

END;

IF (@AndvValid = 1) BEGIN

SET @TagsAreValid = 1;

RETURN @RetVal;

END;

END;

-— no error return code

RETURN @RetVal;

END

GO

CREATE PROCEDURE [dbo].[pds_NSupportingLabelValidate] (
@ResourcelidRef int,

@RecordRegistryGuidRef uniqueidentifier = NULL,
@NumRestrictions tinyint output,

@LabelsAreValid bit output)

AS

BEGIN
/* use null default option for @RecordRegistryGuid to assure
validation against actual RecordRegistryGuid stored in record

rather than against some arbitrarily different input guid «/

SET NOCOUNT ON;

US 8,886,628 B1
37 38

DECLARE @EntityTypeCode smallint, @EntityOtherGuid uniqueidentifier,
@EntityOtherRecRegGuid unigqueidentifier, @RetVal tinyint;

SET @Retval = 0;

—-— Get the (@RecordRegistryGuid if necessary, also other fields needed
IF (@RecordRegistryGuidRef IS NULL)

SELECT @RecordRegistryGuidRef = RecordRegistryInfosetGuidRef,
@EntityTypeCode = EntityTypeCode, @EntityOtherGuid =
EntityOtherInfosetGuidRef

FROM dbo.pds_NResource WHERE (ResourcelidKey =
@ResourcelidRef)

ELSE

SELECT QEntityTypeCode = EntityTypeCode, @EntityOtherGuid =
EntityOtherInfosetGuidRef

FROM dbo.pds_NResource WHERE (ResourcelidKey =

@ResourcelidRef) ;

—— Check existence of label restrictions from the Resource’s Registry
using input @QRecordRegistryGuidRef

SELECT @NumRestrictions = COUNT (%) FROM
dbo.pds_NRegistryRestrictionOrView

WHERE (RegistryGuid = @RecordRegistryGuidRef) AND

(RestrictionIsLabel = 1);

IF (@NumRestrictions = 0)

BEGIN

SET @LabelsAreValid = 1; -- valid by definition when NO

restrictions exist for the registry
RETURN @RetVal;

END;

—-— Check existence of EntityOther and its Registry for MetaResource

US 8,886,628 B1
39 40

EntityTypeCode = 99

IF (QEntityTypeCode = 99)

BEGIN

SELECT @EntityOtherRecRegGuid = RecordRegistryInfosetGuidRef
FROM dbo.pds_NResource WHERE (InfosetGuidKey =
@EntityOtherGuid) ;

IF (@EntityOtherRecRegGuid = @RecordRegistryGuidRef) —- entity
itself and entity other in same registry

BEGIN

SET @LabelsArevalid = 1; -- valid by definition when
MetaResource record is in same registry as described record
RETURN @RetVal;

END;

END;

—-— Get the required label Restrictions from the Resource’s Registry
using input QRecordRegistryGuidRef

DECLARE @Restrictions table (AndIndex tinyint, OrIndex tinyint,
Restriction nvarchar (384));

INSERT INTO @Restrictions (AndIndex, OrlIndex, Restriction)

SELECT RestrictionaAndIndex, RestrictionOrIndex, Restriction

FROM dbo.pds_NRegistryRestrictionOrView

WHERE (RegistryGuid = @RecordRegistryGuidRef) AND
(RestrictionIslLabel = 1)

ORDER BY RestrictionAndIndex, RestrictionOrIndex;

—-— Get the Supportinglabels for the Resource using input @Resourcelid
—--but only those SupportinglLabels where

LabellIsRestricted is true;

—-—also note SupportinglLabel is nvarchar (256)

DECLARE @TestLabels TABLE (LabelUri nvarchar (256));

DECLARE @NumTestLabels int, @NumMatches int;

US 8,886,628 B1
41 42

INSERT INTQO @TestLabels (LabelUri)

SELECT LOWER (SupportingLabel) FROM pds_NSuppocrtingLabel

WHERE (ResourcelidRef = @ResourcelidRef) AND

(LabelIsRestricted = 1);

SELECT @NumTestLabels = COUNT (x) FROM @TestLabels WHERE (LabelUri IS

NOT NULL) ;

—-— initialize @LabelsAreValid to false for remainder o¢f algorithm

SET @LabelsArevalid = 0;

-— If there are label restrictions (E@NumRestrictions > 0) but no test
labels (@NumTestLabels = 0),

- then return invalid else continue with test

IF (@NumRestrictions > 0) AND (@NumTestLabels = 0) RETURN (@RetVal;

DECLARE @AndvValid bit, G@AndIndex tinyint, @AndIdxMax tinyint,
@AndTIdxNum tinyint;

DECLARE @0rValid bit, @OrIndex tinyint, @OrIdxMax tinyint, @OrIdxNum
tinyint;

—-— Algorithm assumes convention that AndIndex = 0, OrIndex = % lists
phrases with multiple concepts per OrlIndex

-— whereas AndIndex >= 1, OrIndex = % lists word stems with one
concept per AndIndex

-— For AndIndex = 0, initialize false until proven true and if true
then return else continue test for AndIndex >= 1

SET @AndIndex = 0;

SELECT @0OrIdxNum = COUNT (x) FROM @Restrictions WHERE AndIndex =
@AndIndex;

IF (QOrIdxNum > 0) BEGIN

—— Algorithm assumes €0rValid false until proven true (search

loop until "accept" at least one "or")

-— Algorithm assumes that OrIndex numbered segquentially

beginning with 1,2,3, ...

US 8,886,628 B1
43 44

SET @0rvalid 0;

SET @0rIndex = 1;

SELECT @OrIdxMax = MAX (OrIndex) FROM @Restrictions WHERE
AndIndex = @AndIndex;

WHILE (@0Orvalid = 0) AND (QOrIndex <= @0rIdxMax) BEGIN
SELECT @NumMatches = COUNT (%) FROM @Testlabels WHERE
LabelUri LIKE

(SELECT Restriction FROM @Restrictions WHERE

AndIndex = @AndIndex AND OrIndex = @0rIndex);

IF (@NumMatches > 0) SET @0rvalid = 1; —-—- at least one
"OR" has been found so accept (forces exit from inner OR while loop)
SET @0rIndex = @0rIndex + 1; -- increment OR index for
inner OR while loop

END;

IF (@0rvalid = 1) BEGIN

SET @LabelsAreValid = 1;

RETURN (@RetvVal;

END;

END;

-— For AndIndex >= 1, re-initialize true until proven false (search
loop until "reject" at least one "and")

—-— Algorithm assumes that AndIndex numbered sequentially beginning
with 1,2,3,...

SELECT (@AndIdxMax = MAX (AndIndex) FROM @Restrictions;

TF (@AndIdxMax > 0) BEGIN

SET @AndValid = 1;

SET G@AndIndex = 1;

WHILE (@AndValid = 1) AND (@AndIndex <= @AndIdxMax) BEGIN

—— Algorithm assumes @0rvalid false until proven true (search

loop until "accept™ at least one "or")

—-— Algorithm assumes that OrIndex numbered sequentially

US 8,886,628 B1

45

6.2 Alternative Embodiments

Many variations on the invention are possible, and the
inclusion of exemplary embodiments with figures and T-SQL
code scripts for structures and algorithms in this application,
the accompanying provisional applications and their attach-
ments, with particular expressions of table, column and vari-
able names should not be construed as limiting because alter-
native names, implementations and embodiments could be
substituted. Alternative embodiments of the distributed net-
work architecture, data structures and algorithms suffice as
long as they implement the required principles of integrating
the PORTAL registry and DOORS directory functionalities
within a paradigm that features self-referencing and self-
describing structures, that enables bootstrapping of the dis-
tributed network of registry and directory servers, that
enables managing multilevel metadata about metadata and
metaresources about resources, and that enables maintaining
the integrity of the problem oriented domains with concept
validating methods.

REFERENCES

[1] C. Taswell, “DOORS to the semantic web and grid with a
PORTAL for biomedical computing,” U.S. Patent 60/944,
517, Jun. 17, 2007, provisional application.

[2] C. Taswell, “PORTALS and DOORS for the semantic web
and grid,” U.S. Pat. No. 7,792,836, Sep. 7, 2010.

[3] A. Newton and M. Sanz. (2005, January) RFC3981: IRIS:
The internet registry information service (IRIS) core pro-
tocol. IETF RFC 3981 Working Draft. [Online]. Available:
http://www.ietf.org/rfc/rfc3981 txt

[4] P. V. Mockapetris. (1987, November) STD13 RFC1035:
Domain names—implementation and specification. IETF
Full Standard. [Online]. Available: http://www.ietf.org/rfc/
rfc1035 txt

[5] C. Taswell, “DOORS to the semantic web and grid with a
PORTAL for biomedical computing,” IEEE Transactions
on Information Technology in Biomedicine, vol. 12, no. 2,
pp. 191-204, February 2008, in the Special Section on
Bio-Grid.

[6] C. Taswell, “A distributed infrastructure for metadata
about metadata: The HDMM architectural style and POR-
TAL-DOORS system,” Future Internet, vol. 2, no. 2, pp.
156-189, 2010, in Special Issue on Metadata and Markup.
[Online]. Available: http://www.mdpi.com/1999-5903/2/
2/156/

[7] K. Shafer, S. Weibel, E. Jul, and J. Fausey. (1996, March)
Introduction to persistent uniform resource locators. [On-
line]. Available: http://purl.oclc.org/docs/inet96.html

[8] C. Taswell, “Use of NLM medical subject headings with
the MeSH2010 thesaurus in the PORTAL-DOORS sys-
tem,” in Proceedings of 8th HealthGrid 2010 Paris, ser.
Studies in Health Technology and Informatics, T. Solo-
minides, 1. Blanquer, V. Breton, T. Glatard, and Y. Legtre,
Eds., vol. 159. 108 Press, 2010, pp. 255-258.

[9] C. Taswell, “Alternative bootstrapping design for the
PORTAL-DOORS cyberinfrastructure with self-referenc-
ing and self-describing features,” in Semantic Web, G. Wu,
Ed. Vukovar, Croatia: In-Teh, 2009, ch. 2, pp. 29-37. [On-
line]. Available: http://sciyo.com/books/show/title/seman-
tic-web

What is claimed is:

1. A method for operating a distributed network system of
internet client-server devices for resource metadata manage-
ment, comprising:

20

25

30

35

40

45

50

55

60

65

46

a distributed network system of stationary and mobile com-
puters acting as server, client or client-server computing
devices;

providing a metadata representation for each of a plurality
of resources, wherein said each of the resources is an
entity including an item comprising a unique uniform
resource identifier (URI), a person, an organization, a
publication, a product, an event, or an activity;

registering said each of the resource entities at one of a
plurality of separate registries or at a registry component
of one of a plurality of combined registry-directories,
wherein said each of the registered resource entities is
identified by a globally unique URI;

publishing said each of the resource entities at one of a
plurality of separate directories or at a directory compo-
nent of one of a plurality of combined registry-directo-
ries, wherein said each of the registered and identified
resource entities is specified with a location and descrip-
tion;

receiving two or more queries by a query parser, determin-
ing, by the query parser, at least one of the two or more
queries is a non-semantic query and at least one of the
remaining of queries is a semantic query;

forwarding, by the query parser, the at least one non-se-
mantic query to the separate registries or to the registry
components of the combined registry-directories,
wherein the registries and the registry components ofthe
registry-directories are configured to manage and pub-
lish non-semantic metadata;

forwarding, by the query parser, the at least one remaining
semantic query only to the separate directories or to the
directory components of the combined registry-directo-
ries, wherein the directories and the directory compo-
nents of the registry-directories are configured to man-
age and publish semantic metadata, wherein the
semantic metadata is in resource description framework
(RDF) or web ontology language (OWL) format;

identifying a metadata record within the metadata of the
one of the registries or the one of the registry compo-
nents of the registry-directories for a selected resource
entity of the resource entities in response to the at least
non-semantic query;

identifying a metadata record within the metadata of the
one of the directories or the one of the directory compo-
nents of the registry-directories for a selected resource
entity of the resource entities in response to the remain-
ing semantic query;

searching for the at least one non-semantic query for one or
more of the resource entities across at least one of the
registries or the registry components of the registry-
directories to at least one of the directories or the direc-
tory components of the registry-directories;

searching for the at least one remaining semantic query for
one or more of the resource entities across at least one of
the directories or the directory components of the regis-
try-directories to at least one of the registries or the
registry components of the registry-directories;

returning a message with a set of zero not-found metadata
records or a plurality of one or more found metadata
records where each metadata record is returned in either
a registry format with the set of data fields stored for
each metadata record in the registry, a directory format
with the set of data fields stored for each metadata record
in the directory or a combined registry-directory format
with the set of data fields stored for each metadata record
in the combined registry-directory as appropriate for
each metadata record found respectively in either a reg-

US 8,886,628 B1

47

istry, directory or combined registry-directory searched
in the set of one or more registries, directories or com-
bined registry-directories queried by the one or more
non-semantic or semantic queries.
2. The method according to claim 1, wherein the semantic
metadataisina triple format equivalent to the RDF format via
a mapping.
3. The method according to claim 1, wherein the non-
semantic metadata is in free text, hypertext markup language
(HTML), extensible markup language (XML), or non-triple
format.
4. The method according to claim 1, further comprising:
performing cross-linking between the resource entities via
a mapping wherein the cross-linking may be further
characterized by the types of the resource entities that
are the source and the target of the cross-linking;

providing a plurality of resource entity types, at least one of
which is a type called a metaresource and defined as the
type of an entity that exists only in a manner dependent
upon the existence of a different independent resource
entity.

5. The method according to claim 1, further comprising:

providing control of the distribution of the metadata

records under a hierarchy of authoritative and non-au-
thoritative servers in response to the at least non-seman-
tic query or the remaining semantic query.

6. The method according to claim 5, wherein the hierarchy
is configured to enable the administrator of each of the reg-
istries to maintain local control based on the policies and rules
defined by the administrator.

7. The method according to claim 1, further comprising:

managing the metadata of the metadata records, both con-

ceptually and technically, with an organizational hierar-
chy of metadata about metadata with the use of meta-
levels wherein a metalevel exists for each of the entity
metadata, record metadata, infoset metadata, represen-
tation metadata and message metadata.

20

25

30

35

48

8. The method according to claim 1, further comprising:

providing a metadata representation for the scope of the
problem oriented domain declared for each of the regis-
tries or the registry components of the registry-directo-
ries wherein the validating concepts that define the scope
are specified as a character sequence, or a word stem, or
a URI for a terminology term, or a URI for a thesaurus
concept, or a URI for an ontology concept;

testing the metadata fields of the metadata records at the
registries or the registry components of the registry-
directories for the presence of any of the character
sequences, the word stems, the terminology term URIs
or the thesaurus concept URIs defined and required by
the problem oriented domain scope;

testing the metadata fields of the metadata records at the
directories or the directory components of the registry-
directories for the presence of any of the ontology con-
cept URIs defined and required by the problem oriented
domain scope;

ordering and processing the sequence of sub-tests within
the overall validation test for the metadata for each reg-
istered resource entity wherein the processing termi-
nates as early as possible upon first successful pass of the
validation test;

deleting the corresponding metadata records for any
resource entity that does not validate successfully within
the time defined and required by the problem oriented
domain scope;

moving the corresponding metadata records from the ini-
tial source registry or the initial source registry compo-
nent of a registry-directory to an alternate target registry
or the registry component of an alternate target registry-
directory for any resource entity that does not validate
successfully at the initial source if the move of the meta-
data from the source to the target is permitted by the
problem oriented scopes defined and required for both
the initial source and the alternate target.

#* #* #* #* #*

